top of page

PUBLICATIONS

Unknown.jpg

 

Sandovici I, et al. (2022). Protocol to isolate and culture primary mouse feto-placental endothelial cells. STAR Protoc. DOI: 10.1016/j.xpro.2022.101721

​

Reiterer M, et al. (2022). Hyperoxia Reprogrammes Microvascular Endothelial Cell Response to Hypoxia in an Organ-Specific Manner. Cells. DOI: 10.3390/cells11162469.

 

Sandovici I. et al. (2022),The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell. DOI: 10.1016/j.devcel.2021.12.005

​

Mc Erlain T, Burke A & Branco CM. (2021) Life after Cell Death-Survival and Survivorship Following Chemotherapy. Cancers. DOI: 10.3390/cancers13122942.

​

Eakin, A. J., et al. (2020). "Circulating levels of epirubicin cause endothelial senescence while compromising metabolic activity and vascular function." Front. Cell Dev. Biol. DOI: 10.3389/fcell.2020.00799

​

Leach, A., et al. (2020). "Anti-DLL4 VNAR targeted nanoparticles for targeting of both tumour and tumour associated vasculature." Nanoscale 12(27): 14751-14763. DOI: 10.1039/D0NR02962A

​

Reiterer, M. and C. M. Branco (2019). "Endothelial cells and organ function: applications and implications of understanding unique and reciprocal remodelling." The FEBS Journal 287(6): 1088-1100. DOI: 10.1111/febs.15143

​

Reiterer, M., et al. (2019). "Acute and chronic hypoxia differentially predispose lungs for metastases." Scientific Reports 10(1): 1-6. DOI: 10.1038/s41598-019-46763-y
 

​Sim, J., et al. (2018). "The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia." Cell metabolism 27(4): 898-913. DOI: 10.1016/j.cmet.2018.02.020

​

​Evans, C. E., et al. (2017). "Modelling pulmonary microthrombosis coupled to metastasis: distinct effects of thrombogenesis on tumorigenesis." Biology open 6(5): 688-697. DOI: 10.1242/bio.024653

 

​Yamamoto, H., et al. (2016). "Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior." Front. Cell Dev. Biol 4: 99. DOI: 10.3389/fcell.2016.00099

 

Evans, C. E., et al. (2016). "Diverse roles of cell-specific hypoxia-inducible factor 1 in cancer-associated hypercoagulation." Blood 127(10): 1355-1360. DOI: 10.1182/blood-2015-09-671982

 

Cowburn, A. S., et al. (2016). "HIF2α–arginase axis is essential for the development of pulmonary hypertension." Proceedings of the National Academy of Sciences 113(31): 8801-8806. DOI: 10.1073/pnas.1602978113

 

Branco, C. and R. S. Johnson (2016). "To PFKFB3 or Not to PFKFB3, That Is the Question." Cancer cell 30(6): 831. DOI: 10.1016/j.ccell.2016.11.007

 

Ashmore, T., et al. (2015). "Nitrate enhances skeletal muscle fatty acid oxidation via a nitric oxide-cGMP-PPAR-mediated mechanism." BMC biology 13(1): 110. DOI: 10.1186/s12915-015-0221-6

 

Branco-Price, C., et al. (2013). "Endothelial hypoxic metabolism in carcinogenesis and dissemination: HIF-A isoforms are a NO metastatic phenomenon." Oncotarget 4(12): 2567. DOI: 10.18632/oncotarget.1461

 

Kim, J.-w., et al. (2012). "Loss of fibroblast HIF-1α accelerates tumorigenesis." Cancer research 72(13): 3187-3195. DOI: 10.1158/0008-5472.CAN-12-0534

 

Branco-Price, C., et al. (2012). "Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success." Cancer cell 21(1): 52-65. DOI: 10.1016/j.ccr.2011.11.017

​

​

bottom of page